Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №C1D9F2

Задача №518 из 1084
Условие задачи:

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.

Решение задачи:

Обозначим точки пересечения биссектрис со сторонами как показано на рисунке.
∠FAK=∠BEK (т.к. это накрест-лежащие углы).
Получается, что ∠BAK=∠BEK, следовательно треугольник ABE - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BE.
Треугольники ABK и EBK равны по первому признаку равенства треугольников.
Следовательно и высоты у этих треугольников тоже равны.
Аналогично, равны и треугольники ABK и AFK.
Получается, что высота параллелограмма равна 2h.
Площадь параллелограмма равна SABCD=2h*BC=2*3*11=66
Ответ: SABCD=66

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №0407AE

Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.

Задача №00CECE

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.

Задача №2D8B04

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.

Задача №8EAAA5

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Задача №056B05

На клетчатой бумаге с размером клетки 1см х 1см отмечены точки A, B и C. Найдите расстояние от точки A до середины отрезка BC. Ответ выразите в сантиметрах.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика