В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.
Проведем
высоту CH.
Средняя линия делит CH пополам, как и стороны треугольника.
Следовательно, CK=KH.
По
теореме о средней линии AB=2DE.
SCDE=DE*CK/2=35.
DE*CK=70
SABC=AB*CH/2=2DE*2CK/2=2DE*CK=2*70=140
Ответ: SABC=140
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 16√
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 3. Найдите радиус окружности.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1.
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Комментарии: