ОГЭ, Математика. Геометрия: Задача №0AF811 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0AF811

Задача №489 из 1084
Условие задачи:

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Решение задачи:

Периметр параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK - биссектриса)
Получается, что треугольник ABK - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BK=7
P=2(AB+BC)=2(AB+BK+KC)=2(7+7+12)=52
Ответ: P=52

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №08CAB1

Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.



Задача №AEC5CC

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.



Задача №D5F808

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.



Задача №E5BAE8

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.



Задача №0EF7A9

В треугольнике ABC AC=15, BC=57, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика