Площадь прямоугольного треугольника равна 32√
Площадь
прямоугольного треугольника равна половине произведения катетов:
S=AC*BC/2=32√
Пусть 60-и градусам равен угол BAC.
Котангенс BAC:
ctd∠BAC=ctg60°=AC/BC=√
AC=BC√
S=AC*BC/2=32√
AC*BC=64√
BC*BC√
BC2=64
BC=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Точка K — середина стороны BC. Докажите, что AK — биссектриса
угла BAD.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
В треугольнике со сторонами 15 и 3 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Комментарии: