Окружности радиусов 3 и 33 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Рассмотрим
трапецию ACO1O2
Данная трапеция
прямоугольная, т.к. радиусы перпендикулярны
касательной AC (по
свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 -
прямоугольник.
По
теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(33+3)2=(O2K)2+(33-3)2
1296=(O2K)2+900
(O2K)2=396
O2K=6√
Рассмотрим треугольники OAO2 и OCO1 (cм. Рис.1).
∠AOO2 - общий
∠OAO2=∠OCO1=90°
Следовательно эти треугольники
подобны (по
первому признаку подобия треугольников).
Тогда, R/r=OC/OA
33/3=OC/OA=(OA+AC)/OA
11OA=OA+6√
OA=6√
Из
подобия этих же треугольников:
R/r=O10/O2O
R/r=(O2O+R+r)/O2O
33/3=(O2O+33+3)/O2O
11(O2O)=O2O+36
10(O2O)=36
O2O=3,6
Обозначим угол ∠AOO2 как α
cosα=OA/OO2=6√
Посмотрим на треугольники OAE и OCF.
Они
прямоугольные по
второму свойству хорды.
Тогда для треугольника OAE:
cosα=OE/OA
OE=OA*cosα=6√
Для треугольника OCF:
cosα=OF/OC
OF=OC*cosα=(OA+AC)*cosα=(6√
EF=OF-OE=12,1-1,1=11
Ответ: EF=11
Поделитесь решением
Присоединяйтесь к нам...
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 8 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 6 м. Найдите длину троса.
Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Высота равностороннего треугольника равна 96√
В треугольнике ABC угол C прямой, AC=6, cosA=0,6. Найдите AB.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 75°. Найдите величину угла OAB.
Комментарии:
(2017-11-01 22:08:16) Администратор: Марианна, спасибо большое! Опечатка исправлена.
(2017-10-31 09:12:30) Марианна: Опечатка в решении: подобными являются треугольники OAO2 и OCO1 (а не OCO2)