Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №9FD08A

Задача №423 из 1084
Условие задачи:

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.

Решение задачи:

Проведем высоты BE и CF как показано на рисунке.
Рассмотрим треугольник CDF. Он прямоугольный, т.к. CF-высота.
По теореме о сумме углов треугольника /FCD=180°-90°-60°=30°. По определению синуса sin/FCD=DF/CD=sin30°=1/2
Т.е. DF=CD/2, CD, в свою очередь, по условию задачи равно AD/2, получам, что DF=AD/4.
BC=AD/2 (по условию задачи)
EF=BC=AD/2 (т.к. BCFE - прямоугольник)
Вычислим AE, AE=AD-DF-EF=AD-AD/4-AD/2=AD/4, т.е. мы получили, что AE=FD
Рассмотрим треугольники ABC и DCF:
BE=CF (т.к. BCFE - прямоугольник)
AE=FD (только что получили)
/AEF=90°=/DFC, тогда по первому признаку равенства, треугольники ABC и DCF равны.
Следовательно, AB=CD, т.е. наша трапеция равнобедренная.
AB=CD=1 (по условию задачи), AD=2*CD=2*BC=2 (тоже по условию), BC=CD=1
FD=AD/4=0,5
По теореме Пифагора CD2=CF2+FD2
12=CF2+0,52
CF2=0,75, CF=0,75
CF=0,53
SABCD=(BC+AD)/2*CF=(1+2)/2*0,53
SABCD=0,753
Ответ: SABCD=0,753

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №524DD7

Укажите номера верных утверждений.
1) Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Ромб не является параллелограммом.
3) Сумма острых углов прямоугольного треугольника равна 90°.

Задача №6A8458

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.

Задача №28E626

В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.

Задача №0ADF98

Центральный угол AOB опирается на хорду АВ длиной 5. При этом угол ОАВ равен 60°. Найдите радиус окружности.

Задача №A36A43

Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика