ОГЭ, Математика. Геометрия: Задача №06177F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Рассмотрим треугольники ABM и CDM.
∠AMB=∠CMD (т.к. они вертикальные).
∠ABM=∠CDM (т.к. они накрест-лежащие).
Следовательно, треугольники ABM и CDM подобны (по первому признаку подобия).
AC=AM+MC => AM=AC-MC
Тогда:
AB/CD=AM/MC
16/24=(AC-MC)/MC
16MC=24(25-MC)
2MC=3(25-MC)
2MC=75-3MC
5MC=75
MC=15
Ответ: MC=15

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A74393

В прямоугольном треугольнике катет и гипотенуза равны 7 и 25 соответственно. Найдите другой катет этого треугольника.



Задача №AAF6DE

На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 4 м?



Задача №7CF591

В параллелограмме KLMN точка E — середина стороны LM. Известно, что EK=EN. Докажите, что данный параллелограмм — прямоугольник.



Задача №A57605

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.



Задача №1D3364

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика