В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=216, HC=54 и ∠ACB=40°. Найдите угол AMB. Ответ дайте в градусах.
Так как BM -
медиана, значит AM=MC=AC/2=216/2=108
Рассмотрим треугольник MBC.
MH=MC-HC=108-54=54, т.е. получается, что MH=HC.
BH для этого треугольника получается не только
высота, но и
медиана. Это
свойство
равнобедренного треугольника.
По
свойству равнобедренного треугольника: ∠BMC=∠ACB=40°.
∠AMB=180°-∠BMC=180°-40°=140° (т.к. он
смежный)
Ответ: ∠AMB=140°
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
На клетчатой бумаге с размером клетки 1×1 изображён прямоугольный треугольник. Найдите длину его большего катета.
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.
Комментарии:
(2015-04-15 16:12:02) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:38:00) Администратор: Ольга.olg1851@yandex.ru, напишите, пожалуйста номер задачи (на fipi.ru) и страницу, что бы эту задачу можно было найти.
(2015-04-15 12:36:11) Администратор: Ольга, спасибо за найденную опечатку, исправлено.
(2015-04-15 10:59:55) Ольга.olg1851@yandex.ru: задачу решите пожалуйста. На стороне АВ треугольника АВС взята точка D так, что окружность, проходящая через точки А,С и D, касается прямой ВС. Найти АD, если АС=15, ВС=18 и СD= 10. Поиск по славам ничего не дал, хотя задача ФИПИ математика ОГЭ 2015. Спасибо
(2015-04-15 10:52:50) Ольга: исправьте ошибку в решении 374 МС = НС? МН=НС