ОГЭ, Математика. Геометрия: Задача №D1A609 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D1A609

Задача №373 из 1087
Условие задачи:

На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.

Решение задачи:

Площадь клетки равна 1, значит клетка имеет и единичные стороны, т.е. равные 1 (1*1=1).
Серединой отрезка BC будет будет точка, которая лежит посередине относительно вертикальной и горизонтальной осей.
То есть, относительно точки С на 3 клетки вправо и на одну клетку вниз.
Относительно точки В на 3 клетки влево и на одну клетку вверх.
Тогда очевидно, что расстояние от точки А до середины ВС равно 2
Ответ: расстояние от точки A до середины отрезка BC равно 2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4A7E13

Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.



Задача №3453FF

Площадь прямоугольного треугольника равна 503. Один из острых углов равен 30°. Найдите длину гипотенузы.



Задача №167EEE

В прямоугольном треугольнике один из катетов равен 7, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.



Задача №F18E5F

В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.



Задача №0511E1

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика