На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
Площадь клетки равна 1, значит клетка имеет и единичные стороны, т.е. равные 1 (1*1=1).
Серединой отрезка BC будет будет точка, которая лежит посередине относительно вертикальной и горизонтальной осей.
То есть, относительно точки С на 3 клетки вправо и на одну клетку вниз.
Относительно точки В на 3 клетки влево и на одну клетку вверх.
Тогда очевидно, что расстояние от точки А до середины ВС равно 2
Ответ: расстояние от точки A до середины отрезка BC равно 2
Поделитесь решением
Присоединяйтесь к нам...
Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.
Площадь прямоугольного треугольника равна 50√
В прямоугольном треугольнике один из катетов равен 7, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?
Комментарии: