Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №163D04

Задача №348 из 1020
Условие задачи:

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.

Решение задачи:

OK перпендикулярен к касательной (по свойству касательной), т.е. угол между OK и касательной равен 90°.
Следовательно, /OKM=90°-7°=83°
Треугольник OMK - равнобедренный (т.к. OM и OK - радиусы окружности и, соответственно, равны друг другу).
По свойству равнобедренного треугольника /OKM=/OMK=83°
Ответ: /OMK=83°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Введите порядковый номер задачи для раздела 'ОГЭ, Математика.
Геометрия:' (от 1 до 1020)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика