На прямой AB взята точка M. Луч MD – биссектриса угла CMB. Известно, что /DMC=60°. Найдите угол CMA. Ответ дайте в градусах.
Так как MD -
биссектриса, то /DMC=/DMB=60°.
Развернутый угол AMB=180° (по определению).
Тогда 180°=/CMA+/DMC+/DMB
180°=/CMA+60°+60°
/CMA=180°-60°-60°
/CMA=60°
Ответ: /CMA=60°
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=52°. Ответ дайте в градусах.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен
60°, а радиус окружности равен 6.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Комментарии: