Катеты прямоугольного треугольника равны
√
Т.к. треугольник
прямоугольный, мы можем применить
теорему Пифагора:
AB2=BC2+CA2
AB2=(√
AB2=15+1=16
AB=4
Наименьший угол лежит напротив наименьшей стороны (по
теореме о соотношении сторон и углов).
Тогда наименьший угол - /ABC (т.к. 1 < √
sin(/ABC)=AC/AB=1/4=0,25
Ответ: синус наименьшего угла равен 0,25.
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь треугольника, изображённого на рисунке.
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.
На отрезке AB выбрана точка C так, что AC=14 и BC=36. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.
Комментарии: