ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.
Вариант 1 (Предложил пользователь Светлана)
Вокруг любого
правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам девятиугольника образуют равные углы, так как разбивают девятиугольник на равные треугольники.
Такой угол (например ∠AOJ) равен 360°/10=36°
Тогда ∠AOI равен:
∠AOI=36°*2=72°
∠AOI является
центральным, следовательно градусная мера дуги IJA тоже равна 76°
∠ADI тоже опирается на эту же дугу, но является
вписанным, следовательно:
∠ADI=72°/2=36° (по
теореме о вписанном угле)
Ответ: 36
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм — прямоугольник.
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 5.
Найдите тангенс угла AOB, изображённого на рисунке.
Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.
В треугольнике ABC угол C равен 90°, BC=8, AB=10. Найдите cosB.
Комментарии: