В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=79 и BC=BM. Найдите AH.
Так как BM -
медиана, значит AM=MC=AC/2=79/2=39,5
Рассмотрим треугольник MBC.
Т.к. BC=BM (по условию задачи), значит этот треугольник
равнобедренный, BH -
высота этого треугольника. По
третьему свойству равнобедренного треугольника MH=HC=MC/2=39,5/2=19,75
Искомая AH=AC-HC=79-19,75=59,25
Ответ: AH=59,25
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.
Найдите тангенс угла AOB.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Комментарии: