ОГЭ, Математика. Геометрия: Задача №E3F3D9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №E3F3D9

Задача №325 из 1085
Условие задачи:

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 85° и 30°. Найдите меньший угол параллелограмма.

Решение задачи:

По свойству параллелограмма /B=/D=85°+30°=115° и /A=/C.
Найдем углы A и C.
Стороны AD и BC параллельны (по определению параллелограмма). Если рассмотреть BD как секущую к этим параллельным прямым, то становится очевидным, что /CBD=/ADB=85° (т.к. они накрест лежащие).
Рассмотрим треугольник ABD.
По теореме о сумме углов треугольника мы можем написать: 180°=/ABD+/BDA+/A
180°=30°+85°+/A
/A=65°=/C
115>65, следовательно углы A и C - меньшие.
Ответ: меньший угол равен 65°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №01D112

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 36.



Задача №03D0F6

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 39 и 42, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.



Задача №FFD85C

Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.



Задача №F18E5F

В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.



Задача №69CD50

В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.

Комментарии:


(2016-03-05 20:33:00) Администратор: Сэм, уточните, где именно ошибка?
(2016-03-04 17:36:26) сэм: у вас ошибка в написание

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика