ОГЭ, Математика. Геометрия: Задача №4F3CD0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F3CD0

Задача №288 из 1087
Условие задачи:

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.

Решение задачи:

Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По определению tgABC=AC/CB=2,4 => CB=AC/2,4.
По теореме Пифагора AB2=AC2+CB2
AB2=AC2+(AC/2,4)2
AB2=6,76*AC2/5,76
AB=2,6*AC/2,4=1,3*AC/1,2
Необходимо вычислить AC.
По теореме о сумме углов треугольника для треугольника ABC:
/CAB=180°-90°-/ABC
Для треугольника ACP:
/CAB=180°-90°-/ACP
Следовательно, /ABC=/ACP.
Рассмотрим треугольник ACP.
По определению tgACP=AP/CP=2,4 => AP=2,4*CP.
По теореме Пифагора AC2=CP2+AP2
AC2=CP2+(2,4*CP)2
AC2=6,76*CP2
AC=2,6*CP
CP=AC/2,6
r=(AP+CP-AC)/2
2*r=2,4*CP+CP-AC
2*r=3,4CP-AC
2*12=3,4*AC/2,6-AC
24=0,8*AC/2,6
30=AC/2,6
78=AC
Вычислив AC, мы можем вычислить AB и CP, указанные выше:
AB=1,3*AC/1,2=1,3*78/1,2=13*78/12=13*26/4=84,5
CB=AC/2,4=78/2,4=32,5
R=(AC+CB-AB)/2, тогда получаем:
R=(78+32,5-84,5)/2=13.
Ответ: R=13.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8A7C04

Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №77E678

Какие из данных утверждений верны? Запишите их номера.
1) Через две различные точки на плоскости проходит единственная прямая.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.



Задача №116D41

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.



Задача №4DCFDB

Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика