Найдите угол ABC равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной CD углы, равные 30° и 80° соответственно.
Угол ∠BCA=∠CAD, т.к. это
внутренние накрест-лежащие углы.
Следовательно, ∠BCD=80°+30°=110°.
По
свойству равнобедренной трапеции ∠BCD=∠ABC=110°.
Ответ: ∠ABC=110°
Поделитесь решением
Присоединяйтесь к нам...
На отрезке AB выбрана точка C так, что AC=6 и BC=4. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 30 см, а длина – 40 см. Найдите расстояние между точками A и B (в метрах).
В треугольнике ABC угол C прямой, BC=4, sinA=0,8. Найдите AB.
Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.
Комментарии:
(2021-10-04 12:42:21) Администратор: Потому, что AB не параллельна CD.
(2021-09-30 09:52:25) : а почему угла BAC и ACD не являются накрест лежащими?