ОГЭ, Математика. Геометрия: Задача №52C267 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №52C267

Задача №237 из 1087
Условие задачи:

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MN - средняя линия треугольника ABC. Следовательно, MN=AK и MN||AK (по теореме о средней линии).
NK - тоже средняя линия, равна AM и параллельна AM.
Получается, что AM=MN=NK=KA, т.е. AMNK - ромб (по свойству ромба).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №74F521

На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №7ECA85

Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 502.



Задача №EB170F

В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.



Задача №56A917

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC.



Задача №F48418

Площадь параллелограмма ABCD равна 56. Точка E — середина стороны CD. Найдите площадь трапеции AECB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика