Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Рассмотрим каждое утверждение:
1) "Медиана
равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам", это утверждение верно (по
свойству равнобедренного треугольника).
2) "Не существует прямоугольника, диагонали которого взаимно перпендикулярны", это утверждение неверно,
квадрат - такой
прямоугольник.
3) "В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса", это утверждение верно. Это очевидно, если провести отрезок через центр
окружности и данную точку, радиус будет меньше этого отрезка.
Поделитесь решением
Присоединяйтесь к нам...
Основания трапеции относятся как 2:3. Через точку пересечения диагоналей проведена прямая, параллельная основаниям. В каком отношении эта прямая делит площадь трапеции?
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=86, SQ=43.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
Комментарии:
(2017-01-10 22:30:29) Администратор: Нет, конечно. Смежные углы характерны тем, что их сумма равна 180 градусов. А вот вертикальные углы равны.
(2017-01-10 19:47:24) : смежные углы равны?