ОГЭ, Математика. Геометрия: Задача №4F6A6A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F6A6A

Задача №231 из 1084
Условие задачи:

Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна 180°.

Решение задачи:

Рассмотрим каждое утверждение:
1) "Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника". Высота, проведенная к основанию является и медианой, и биссектрисой (по свойству равнобедренного треугольника), т.е. является серединным перпендикуляром. А центром описанной окружности является точка пересечения серединных перпендикуляров ( теорема об описанной окружности). Следовательно, это утверждение верно.
2) "Квадрат является прямоугольником", это утверждение верно (по определению).
3) "Сумма углов любого треугольника равна 180°", это утверждение верно (по теореме).

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9EF990

Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.



Задача №239EF1

Периметр треугольника равен 54, одна из сторон равна 15, а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.



Задача №99B7F9

Синус острого угла A треугольника ABC равен 21/5. Найдите cosA.



Задача №AB62A7

В треугольнике ABC угол C прямой, BC=8, cosB=0,8. Найдите AB.



Задача №2FD244

Радиус окружности, описанной около квадрата, равен 48√2. Найдите радиус окружности, вписанной в этот квадрат.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика