ОГЭ, Математика. Геометрия: Задача №E5BAE8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №E5BAE8

Задача №229 из 1087
Условие задачи:

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Решение задачи:

По условию задачи ВМ - медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
SABК=SAKM=(SABM)/2=(SABC)/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC. SCKP=(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)SCKB=(2/12)SABC =(1/6)SABC.
SKPCM=SCMK+SCKP=(SABC)/4+(1/6)SABC=(5/12)SABC. Следовательно отношение SABK к SKPCM равно ((1/4)SABC)/((5/12)SABC)=3/5=0,6.
Ответ: SABK/SKPCM=3/5=0,6.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №58CE70

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.



Задача №BBA461

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=16, BF=12.



Задача №8F3B36

Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 35° и 30°. Найдите больший угол параллелограмма.



Задача №BE2459

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №FBF9BC

Площадь прямоугольного треугольника равна 3923. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:


(2016-04-24 16:09:22) Администратор: Наталья, спасибо за предложение. Принцип Вы использовали тот же самый, только сократили запись. Для пользователей сайта некоторые моменты могут оказаться непонятными. Например вот этот: S2+S3=2x/3, т.к. PC=(2/3)BC. Но спасибо за проявленную инициативу.
(2016-04-22 02:12:00) Наталья: Предлагаю немножко упростить, оставить только ME//AP. EC=PE, т.к. ME-средняя линия APC. PE=BP, т.к. KP-средняя линия MBE. EC=PE=PB. Обозначим: S1 - площадь ABK, S2 - площадь AKM, S3 - площадь KPCM, х - площадь ABC. S1=S2=x/4 S2+S3=2x/3, т.к. PC=2/3BC S3=2x/3-x/4=5x/12 S1/S3=(x/4):(5x/12)=3/5

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика