Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.
Рассмотрим каждое утверждение:
1) "
Медиана
равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, т.к. это
свойство
равнобедренного треугольника.
2) "Диагонали любого прямоугольника делят его на 4 равных треугольника", это утверждение неверно, т.к. у равных треугольников равны все стороны, а одна из сторон треугольников совпадает с одной из стороной прямоугольника. А соседние стороны прямоугольника могут быть не равны друг другу, тогда и стороны треугольников будут не равны, а значит и неравны сами треугольники.
3) "Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса", это утверждение верно, это становится очевидным, если провести радиус через эту точку.
Поделитесь решением
Присоединяйтесь к нам...
Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
Центральный угол
AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 5.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 80°. Найдите величину угла OAB.
Найдите площадь квадрата, если его диагональ равна 1.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: