ОГЭ, Математика. Геометрия: Задача №2CB285 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №2CB285

Задача №196 из 1087
Условие задачи:

В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.

Решение задачи:

NK - является средней линией треугольника ABC и равна половине AB.
MK - является средней линией треугольника ABC и равна половине BC.
Т.к. AB=BC (по условию), то NK=MK.
Следовательно треугольник MNK - равнобедренный.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EECCA2

Катеты прямоугольного треугольника равны 26 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №84B6C0

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №02270F

Найдите площадь треугольника, изображённого на рисунке.



Задача №184501

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.



Задача №F6FBB5

Синус острого угла A треугольника ABC равен . Найдите CosA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика