ОГЭ, Математика. Геометрия: Задача №FC3809 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №FC3809

Задача №181 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Любой параллелограмм можно вписать в окружность", это утверждение неверно, т.к. должно выполняться условие об углах параллелограмма.
2) "Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны", это утверждение верно по свойству углов.
3) "Точка пересечения двух окружностей равноудалена от центров этих окружностей", это утверждение неверно. По определению окружности, все точки окружности равноудалены от центра, а точки пересечения окружностей, естественно, принадлежат окружностям, т.е. находятся от центров на расстоянии равном радиусам окружностей. Если окружности имеют разные радиусы, то точка пересечения находится на разных растояниях от центров.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B04F9A

Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, вписанной в этот треугольник.



Задача №3F80D4

На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=36, BC=42 и CD=24.



Задача №5BBFC4

Стороны AC, AB, BC треугольника ABC равны 32, 13 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №DF3B1D

Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OHI. Ответ дайте в градусах.



Задача №C6FA1C

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.

Комментарии:


(2015-03-09 16:33:57) Администратор: Татьяна, думаю, Вы правы. Я неверно истолковал утверждение. Исправлено. Спасибо большое, что поправили!!!
(2015-03-08 16:15:37) Татьяна: Я думаю, в 3) неверно, так как там не указано, что окружности с одинаковым радиусом, а если это окружности с разными радиусами, то точка их пересечения будет не равноудалена от центров этих окружностей. А вообще, огромная Вам благодарность, спасибо за сайт.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика