Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Проведем следующие отрезки (как показано на рисунке 2):
1) Из точки О2 к точке касания окружности и продолжения стороны ВС. (точка Р)
2) Из точки О1 к точке касания окружности и продолжения стороны ВС. (Точка К)
3) Из точки О1 к точке О2.
Заметим, что:
1) СМ=АС/2.
2) СР=СМ, по
второму свойству касательной.
3) СМ=СК, по
второму свойству касательной.
4) O1O2=R+r.
5) O2Р перпендикулярна AC, по
первому свойству касательной.
6) O1К тоже перпендикулярна AC, по
свойству касательной.
7) Из пунктов 2) и 3) следует, что СР=СК=СМ=АС/2. Тогда РК=АС/2+АС/2=АС.
Следовательно, O2Р ||
O1К (по
свойству параллельных прямых). Отсюда следует, что
О1О2РК - прямоугольная трапеция (по
определению трапеции).
Рассмотрим эту трапецию.
Проведем отрезок О2Е параллельный РК, а раз он параллелен РК, то в свою очередь перпендикулярен О1К и равен ему. Следовательно получившийся треугольник O1O2Е -
прямоугольный.
Тогда, по
теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.
Подставим известные нам данные, полученные ранее:
(R+r)2=AC2+(R-r)2. Раскрываем скобки, получаем:
R2+2Rr+r2=AC2+R2-2Rr+r2
2Rr=AC2-2Rr
4Rr=AC2
r=(AC2)/4R
r=102/(4*8)
r=10*10/(4*8)
r=5*10/(2*8)
r=5*5/8
r=25/8
r=3,125
Ответ: радиус вписанной окружности равен 3,125.
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке O проведены диаметры
AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.
Площадь прямоугольного треугольника равна 392√
Комментарии: