В треугольнике ABC известно, что ∠BAC=64°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Так как AD — биссектриса, то:
∠BAD=∠BAC/2=64°/2=32°
Ответ: 32
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Сторона квадрата равна 4√2. Найдите радиус окружности, описанной около этого квадрата.
Комментарии: