ОГЭ, Математика. Геометрия: Задача №D61C68 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D61C68

Задача №1002 из 1084
Условие задачи:

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=18, CM=21. Найдите OM.

Решение задачи:

Отрезки AN и CM - являются медианами треугольника ABC.
Тогда, применяя первое свойство медианы, можем записать:
CO/OM=2/1, т.е. CO=2OM
При этом CM=CO+OM
21=CO+OM, подставляем в это уравнение первое равенство:
21=2OM+OM
21=3OM
OM=7
Ответ: 7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №3A84F2

В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 25°. Найдите величину угла OCD.



Задача №465DF5

Найдите тангенс угла AOB.



Задача №029FEC

Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.



Задача №0E345D

Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.



Задача №2EB3D5

В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика