ОГЭ, Математика. Числовые последовательности: Задача №24B689 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
�...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №24B689

Задача №69 из 182
Условие задачи:

Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.

Решение задачи:

В геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Тогда:
b2=b1q
68=17q
q=4
b4=b3q=272*4=1088
Ответ: b4=1088

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8140DA

Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?



Задача №8140DA

Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?



Задача №A4935D

Выписаны первые несколько членов арифметической прогрессии: -7; -1; 5; … Какое число стоит в этой арифметической прогрессии на 91-м месте?



Задача №52BAE5

Последовательность (bn) задана условиями:
b1=7, bn+1=-3*(1/bn)
Найдите b3.



Задача №FA5E5A

Последовательность (cn) задана условиями:
c1=5, cn+1=cn-4.
Найдите c6.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика