Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?
Обозначим как "х" процентное содержание кислоты в первом растворе.
Обозначим как "y" процентное содержание кислоты во втором растворе.
Напомним, что 1 процент (%) от числа - это 0,01 от этого числа.
Получаем уравнение из условия 1 (Если их слить вместе, то получим раствор, содержащий 65% кислоты):
12x+8y=(12+8)*0,65
12x+8y=20*0,65
12x+8y=13
Получаем уравнение из условия 2 (Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты), для удобства возьмем по одному кг каждого раствора:
1*x+1*y=(1+1)*0,6
x+y=2*0,6
x+y=1,2
Получили систему уравнений:

Умножим второе уравнение на 12:


А теперь, чтобы избавиться от "х", вычтем из второго уравнения первое:
(12x+12y)-(12x+8y)=14,4-13
12x+12y-12x-8y=1,4
4y=1,4
y=0,35 - это концентрация кислоты во втором растворе.
Найдем, сколько килограммов кислоты содержится во втором растворе:
8*0,35=2,8
Ответ: 2,8
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
В прямоугольном треугольнике ABC катет AC=35, а высота CH, опущенная на гипотенузу, равна 14√
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=28.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
Комментарии: