Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Применим основную тригонометрическую формулу:
sin2A+cos2A=1


По второму правилу действий со степенями:

По первому правилу действий со степенями:


(использовали второе свойство арифметического корня)
Ответ: 0,125
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=9, sinA=0,3. Найдите AB.
Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь этого ромба.
Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 1,8 м?
Стороны AC, AB, BC треугольника ABC равны 2√
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Комментарии: