Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Применим основную тригонометрическую формулу:
sin2A+cos2A=1


По второму правилу действий со степенями:

По первому правилу действий со степенями:


(использовали второе свойство арифметического корня)
Ответ: 0,125
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен
30°. Найдите площадь трапеции, если её основания равны 2 и 5.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.
В трапеции ABCD известно, что AD=4, BC=3, а её площадь равна 84. Найдите площадь трапеции BCNM, где MN — средняя линия трапеции ABCD.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
Комментарии: