Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x(x+1)-3x, при x≥0
y=(-x)(x+1)-3x, при x<0
y=x2+x-3x, при x≥0
y=-x2-x-3x, при x<0
y=x2-2x, при x≥0
y=-x2-4x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y=x2-2x, при x≥0
Графиком данной подфункции является парабола. Ветви этой параболы направлены вверх, так как коэффициент при x2 положительный.
Найдем корни уравнения x2-2x=0
x(x-2)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x1=0
2) x-2=0
x2=2
Построим график по точкам:
| X | 0 | 1 | 2 | 3 |
| Y | 0 | -1 | 0 | 3 |
| X | 0 | -1 | -2 | -3 | -4 |
| Y | 0 | 3 | 4 | 3 | 0 |
Красный график: y=x2-2x, при x≥0Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=-x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Постройте график функции y=4|x+6|-x2-11x-30 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=-2x имеет с графиком ровно одну общую точку.
На графике изображена зависимость атмосферного давления от высоты
над уровнем моря. На горизонтальной оси отмечена высота над уровнем моря в километрах, на вертикальной — давление в миллиметрах ртутного столба. Определите по графику, на какой высоте атмосферное давление равно 480 миллиметрам ртутного столба. Ответ дайте в километрах.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
| УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
| А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-3;-2] 2) [-4;-2] 3) [-5;-4] 4) [-5;0] |
Комментарии: