Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 33 км/ч, а вторую половину пути проехал со скоростью на 22 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста.
Введем обозначения:
v1 - скорость первого автомобилиста.
S - длина пути от А до В.
Тогда:
S/v1 - время в пути первого автомобилиста.
S/2 - половина пути.
S/(2*33) - время второго автомобилиста на первой половине пути.
v1+22 - скорость второго автомобилиста на второй половине пути.
S/(2*(v1+22)) - время, за которое второй автомобилист проехал вторую половину пути.
Так как автомобилисты одновременно прибыли в пункт В, то суммарное время в пути у них одинаковое:
Немного упростим выражение, в правой части уравнения вынесем S за скобку.
Сократим S:
В правой части приведем дроби к общему знаменателю:
66(v1+22)=v1(v1+55)
66v1+66*22=v12+55v1
0=v12+55v1-66v1-66*22
0=v12-11v1-1452
Решим это квадратное уравнение через дискриминант:
D=(-11)2-4*1*(-1452)=121+5808=5929
v1-1=(-(-11)+77)/(2*1)=(11+77)/2=88/2=44
v1-2=(-(-11)-77)/(2*1)=(11-77)/2=-66/2=-33
Так как скорость отрицательной быть не может, то v1=44 км/ч.
Ответ: 44
Поделитесь решением
Присоединяйтесь к нам...
Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 2 км от места отправления. Один идёт со скоростью 3,8 км/ч, а другой — со скоростью 5,7 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча?
Решите систему уравнений
Государству принадлежит 90% акций предприятия, остальные акции принадлежат частным лицам. Общая прибыль предприятия после уплаты налогов за год составила 20 млн руб. Какая сумма (в рублях) из этой прибыли должна пойти на выплату частным акционерам?
Решите уравнение x6=(5x-6)3.
Решите неравенство
Комментарии: