Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.
Чтобы определить точку касания двух графиков, необходимо решить систему, составленную их функций этих графиков:
Подставим первое уравнение во второе:
x2+(2x+b)2=5
Раскроем скобку при помощи формулы
квадрат суммы:
x2+(2x)2+2*2x*b+b2=5
x2+4x2+4xb+b2=5
5x2+4xb+b2-5=0
Решим это квадратное уравнение через дискриминант:
D=(4b)2-4*5*(b2-5)=16b2-20(b2-5)=16b2-20b2+100=-4b2+100
В условии сказано, что прямая КАСАЕТСЯ окружности, следовательно имеет только одну общую точку, следовательно, решение системы должно быть только одно, т.е. решение
квадратного уравнения тоже должно быть одно. Для этого
дискриминант должен быть равен нулю:
-4b2+100=0
-4b2=-100 |:(-4)
b2=25
b1=5
b2=-5
Мы получили такие b, при которых прямая y=2x+b будет иметь только одну общую точку (т.е. касаться) с окружностью x2+y2=5.
Продолжим решать квадратное уравнение для каждого b:
1) b=5
Тогда наше уравнение имеет вид:
5x2+4x*5+52-5=0
5x2+20x+25-5=0
5x2+20x+20=0 |:5
x2+4x+4=0
Дискриминант равен нулю, мы его сами приравняли к нулю. Найдем x:
x=-4/(2*1)=-4/2=-2 - это абцисса точки пересечения, она отрицательна, поэтому не подходит по условию задачи.
2) b=-5
Тогда наше уравнение имеет вид:
5x2+4x(-5)+(-5)2-5=0
5x2-20x+25-5=0
5x2-20x+20=0 |:5
x2-4x+4=0
x=-(-4)/2=4/2=2 - эта абцисса подходит под условие.
Подставим эти значения х и b в уравнение прямой:
y=2x+b
y=2*2-5
y=-1 - это ордината точки пересечения.
Ответ: (2;-1)
Поделитесь решением
Присоединяйтесь к нам...
Диагональ прямоугольника образует угол 75° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
В трапецию, сумма длин боковых сторон которой равна 30, вписана окружность. Найдите длину средней линии трапеции.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Один из углов равнобедренной трапеции равен 113°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
Комментарии: