Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.
Центр
описанной окружности располагается на пересечении
серединных перпендикуляров треугольника. Так как треугольник
равнобедренный, то
биссектриса и
серединный перпендикуляр, проведенные к основанию, совпадают.
Следовательно, BO -
биссектриса угла ABC.
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
Треугольник OBC -
равнобедренный, так как OB и OC - радиусы окружности и следовательно равны.
По
свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
По
теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
Ответ: 3
Поделитесь решением
Присоединяйтесь к нам...
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 62°. Найдите величину угла OMK. Ответ дайте в градусах.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии:
(2017-03-06 23:01:34) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-04 19:40:30) : На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA = 32°. Найдите угол NMB. Ответ дайте в градусах.