В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=8.
Рассмотрим треугольник ABF.
По свойству
биссектрисы:
BG/GF=AB/AF=5/3
cosA=AF/AB=3/5 (по
определению косинуса)
Существует тригонометрическая формула:
sin2α+cos2α=1
Тогда:
sin2∠BAF+cos2∠BAF=1
sin2∠BAF+(3/5)2=1
sin2∠BAF=1-9/25
sin2∠BAF=(25-9)/25
sin2∠BAF=16/25
sin∠BAF=4/5
По
теореме синусов:
BC/sin∠BAF=2R
8/(4/5)=8*5/4=10=2R
R=10/2=5
Ответ: 5
Поделитесь решением
Присоединяйтесь к нам...
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=25°. Найдите величину угла BOC. Ответ дайте в градусах.
Сторона равностороннего треугольника равна 2√
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
Комментарии: