ОГЭ, Математика. Геометрия: Задача №F17BEE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F17BEE

Задача №697 из 1087
Условие задачи:

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Решение задачи:

Проведем несколько отрезков:
EH - радиус малой окружности. Он перпендикулярен AB (по свойству касательной).
FG - радиус большой окружности. Он перпендикулярен AB (по свойству касательной).
HG - отрезок, соединяющий центры окружностей и равный R+r, так как он проходит через точку К.
Рассмотрим треугольники AFG и AEH:
∠EAH - общий;
углы AEH и AFG - прямые.
Следовательно эти треугольники подобны, тогда:
FG/EH=AG/AH
FG/EH=(AH+HG)/AH
32/31=(AH+R+r)/AH
32AH=31(AH+63)
32AH-31AH=1953
AH=1953
sin∠EAH=EH/AH=31/1953=1/63
AK=AH+r=1953+31=1984
AK перпендикулярен BC, т.к. это продолжение большого и малого радиусов, а AB - касательная ( свойство касательной). AK делит хорду AB пополам (по свойству хорды).
Треугольник ABC - равнобедренный, т.к. AK - и медиана и высота ( свойство равнобедренного треугольника).
Теперь уберем из рисунка все, что нас больше не интересует и резюмируем, что мы знаем:
AK=1984
sinα=1/63
Так как AK - биссектриса, то центр описанной окружности находится на AK.
Найдем AB.
По теореме Пифагора:
AB2=AK2+BK2
AB2=AK2+(AB*sinα)2
AB2-AB2*sin2α= 19842
AB2(1-1/632)=19842
AB2(632-1)=632*19842
AB2=632*19842/(632-1)
Рассмотрим треугольник AOB.
AO=OB, так как это радиусы окружности, следовательно данный треугольник равнобедренный.
Проведем высоту ON, в равнобедренном треугольнике она так же является и медианой (по свойству равнобедренного треугольника).
sinα=ON/AO => ON=AO/63
По теореме Пифагора:
AO2=ON2+AN2
AO2=AO2/632+(AB/2)2
AO2-AO2/632=AB2/4
AO2(1-1/632)=AB2/4
AO2((632-1)/632)=(632*19842/(632-1))/4
4AO2=632*19842/(632-1)/((632-1)/632)=632*19842*632/(632-1)2
2AO=632*1984/(632-1)
2AO=3969*1984/3968=3969/2=1984,5
AO=992,25
Ответ: 992,25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5F0BC9

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №55CB45

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.



Задача №2854A7

Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.



Задача №D97D85

Найдите площадь параллелограмма, изображённого на рисунке.



Задача №3B5D8B

На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.

Комментарии:


(2017-03-21 19:51:48) Администратор: Мария, конечно это опечатка, спасибо большое, что заметили. Исправлено.
(2017-03-19 18:42:33) Мария: АК не может быть перпендикулярен АВ!!! может быть ВС?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Хорда — отрезок прямой линии, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Свойства хорды окружности:
1) Хорды являются равноудаленными от центра окружности только тогда, когда они равны по длине.

AB=CD
2) Серединный перпендикуляр к хорде проходит через центр окружности.

3) Радиус, перпендикулярный хорде, делит эту хорду пополам.

4) Дуги, заключенные между двумя равными параллельными хордами, равны.

5) При пересечении двух хорд окружности, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой.

AM*MB=CM*MD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика