ОГЭ, Математика. Геометрия: Задача №83290A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №83290A

Задача №852 из 1087
Условие задачи:

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.

Решение задачи:

По свойству равнобедренной трапеции - углы при основании равны.
Тогда ∠ADC=∠BAD=30°+45°=75°.
Сумма углов четырехугольника равна 360°, тогда получаем, что:
360°=75°+75°+∠DCB+∠CBA,
∠DCB+∠CBA=360°-75°-75°=210°, а учитывая, что ∠DCB=∠CBA (по тому свойству равнобедренной трапеции), получаем ∠DCB=∠CBA=210°/2=105°, эти углы и есть бОльшие в трапеции
Ответ: 105

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №032880

В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=104°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.



Задача №FBF9BC

Площадь прямоугольного треугольника равна 3923. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.



Задача №099645

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=7.



Задача №D39CE0

Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.



Задача №6A8458

В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренной трапеции:
1) Диагонали равнобедренной трапеции равны .
2) Углы при одном основании равнобедренной трапеции равны.
3) Только около равнобедренной трапеции можно описать окружность; она совпадает с окружностью, описанной около любого треугольника с вершинами в вершинах трапеции. Её центр лежит на серединном перпендикуляре к основаниям трапеции.
4) Если центр описанной окружности лежит на основании трапеции, то ее диагональ перпендикулярна боковой стороне.
5) В равнобедренную трапецию можно вписать окружность, если боковая сторона равна средней линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика