ОГЭ, Математика. Геометрия: Задача №22CB44 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №22CB44

Задача №799 из 1087
Условие задачи:

В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники KLA и NMA. LA=MA, т.к. точка А - середина LM, AK=AN из условия задачи, LK=MN (по свойству параллелограмма). Соответственно, треугольники KLA и NMA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что ∠KLA=∠NMA.
LK||MN (по определению параллелограмма), рассмотрим сторону LM как секущую к этим параллельным сторонам. Тогда получается, что сумма углов KLA и NMA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Рассмотрим треугольник KAN, KA=NA (по условию задачи), соответственно, этот треугольник равнобедренный. Отсюда следует, что ∠AKN=∠ANK ( из свойства равнобедренного треугольника). Из ранее полученного равенства треугольников, следует, что ∠LKA=∠MNA. Получаем, что углы LKN и MNK равны.
В свою очередь они так же являются внутренними односторонними и их сумма равна 180°. Получается, что и эти углы равны 90° каждый.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1C7299

В трапеции ABCD основания AD и BC равны соответственно 33 и 11, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.



Задача №1380DA

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.



Задача №9FD08A

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.



Задача №3F80D4

На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=36, BC=42 и CD=24.



Задача №24CEEC

В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства параллелограмма:
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
3) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
4) Сумма углов, прилежащих к одной стороне, равна 180°
5) Точка пересечения диагоналей является центром симметрии параллелограмма.
6) Сумма всех углов равна 360°(сумма углов многоугольника = 180( n - 2), где n кол-во углов).
7) Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d12+d22 = 2*(a2 + b2).
Признаки параллелограмма.
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1) Противоположные стороны попарно равны: AB = CD, AD = BC.
2) Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
3) Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
4) Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180°, ∠B + ∠C = 180°, ∠C + ∠D = 180°, ∠D + ∠A = 180°.
5) Противоположные стороны равны и параллельны: AB = CD, AB || CD.
6) Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
7) Сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC2+BD2 = AB2+BC2+CD2+DA2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика