ОГЭ, Математика. Геометрия: Задача №221DAD | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №221DAD

Задача №793 из 1087
Условие задачи:

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.

Решение задачи:

По свойству касательной:
OF - радиус окружности, т.к. OF проходит через центр окружности и перпендикулярен касательной AC.
AG=AF
BG=BH=x
CH=CF=y
AF найдем по теореме Пифагора:
AO2=AF2+OF2
132=AF2+52
169=AF2+25
AF2=144
AF=12=AG
EH - высота параллелограмма. EH=OH+OE=5+9=14
SABC=p*r, где p - полупериметр, r - радиус вписанной окружности.
p=(AB+BC+AC)/2.
Рассмотрим треугольники ABC и CDA.
AD=BC и AB=CD (по свойству параллелограмма).
AC - общая сторона.
Следовательно, по третьему признаку равенства треугольников, данные треугольники равны.
Тогда: SABCD=2*SABC
И в тоже время SABCD=EH*AD.
Приравняем полученные равенства:
p*r=EH*AD/2
(AB+BC+AC)/2*r=EH*BC/2
(AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC)
(12+x+x+y+y+12)*5=14*(x+y)
(24+2x+2y)*5=14*(x+y)
120+5(2x+2y)=14*(x+y)
120+10(x+y)=14*(x+y)
120=4(x+y)
x+y=30=BC=AD
SABCD=EH*AD=14*30=420
Ответ: 420

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4E7064

Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=37, AB=56. Найдите AC.



Задача №3CF02F

В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.



Задача №3F80D4

На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=36, BC=42 и CD=24.



Задача №25EF8F

В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.



Задача №8CDAE4

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.

Комментарии:


(2016-04-18 11:48:14) Администратор: Даниил, конечно это опечатка, спасибо огромное, что нашли. Исправлено!
(2016-04-17 23:14:25) Даниил: (AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC) (12+x+x+y+y+4)*5=14*(x+y) откуда 4=AF

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства параллелограмма:
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
3) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
4) Сумма углов, прилежащих к одной стороне, равна 180°
5) Точка пересечения диагоналей является центром симметрии параллелограмма.
6) Сумма всех углов равна 360°(сумма углов многоугольника = 180( n - 2), где n кол-во углов).
7) Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d12+d22 = 2*(a2 + b2).
Признаки параллелограмма.
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий:
1) Противоположные стороны попарно равны: AB = CD, AD = BC.
2) Противоположные углы попарно равны: ∠A = ∠C, ∠B = ∠D.
3) Диагонали делятся в точке их пересечения пополам: AO = OC, BO = OD.
4) Сумма соседних углов равна 180 градусов: ∠A + ∠B = 180°, ∠B + ∠C = 180°, ∠C + ∠D = 180°, ∠D + ∠A = 180°.
5) Противоположные стороны равны и параллельны: AB = CD, AB || CD.
6) Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
7) Сумма квадратов диагоналей равна сумме квадратов сторон параллелограмма: AC2+BD2 = AB2+BC2+CD2+DA2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика