В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём BF = DM, BE = DK. Докажите, что EFKM — параллелограмм.
1) Рассмотрим треугольники EBF и KDM.
BF=DM (по условию задачи)
/B=/D (по
свойству параллелограмма)
BE=DK (по условию задачи).
Следовательно, треугольники EBF и KDM равны (по первому признаку).
Поэтому ЕF=KM.
2) Рассмотрим треугольники AEM и FCK.
Т.к. AB=CD и AD=BC (по
свойству параллелограмма), а BF=DM и BE=DK (по условию задачи), то AE=CK и AM=CF.
/A=/C (по
свойству параллелограмма).
Следовательно, треугольники AEM и FCK (по первому признаку). А это значит, что EM=FK.
Из пунктов 1 и 2 (равенство сторон) следует, что EFKM —
параллелограмм (по
свойству параллелограмма).
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 3√
Найдите площадь трапеции, изображённой на рисунке.
Сторона ромба равна 26, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Комментарии: