ОГЭ, Математика. Геометрия: Задача №BE1FC6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BE1FC6

Задача №342 из 1087
Условие задачи:

На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.

Решение задачи:

Проведем отрезок AD, где D - точка касания окружности и касательной.
AD перпендикулярен к касательной (по свойству касательной), т.е. угол между AD и касательной DB равен 90°.
Следовательно, треугольник ABD - прямоугольный.
AD=AC=75 (т.к. это радиусы окружности и, соответственно, равны друг другу).
По теореме Пифагора: AB2=AD2+BD2
(75+10)2=752+BD2
7225=5625+BD2
BD2=1600
BD=40
Ответ: длина касательной равна 40.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8ACCF9

Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №FFBC49

Площадь прямоугольного треугольника равна 183/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.



Задача №0CC927

В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.



Задача №E77CF5

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 130°.



Задача №935AE0

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 6.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Окружность — геометрическое место точек плоскости, удалённых от некоторой точки — центра окружности — на заданное расстояние, называемое радиусом окружности. Окружность нулевого радиуса (вырожденная окружность) является точкой, иногда этот случай исключается из определения.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика