Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
Рассмотрим каждое утверждение:
1) "Если угол острый, то смежный с ним угол также является острым". Сумма
смежных углов равна 180°, следовательно, один из
смежных углов острый (<90°), то другой тупой (>90°). Т.е. это утверждение неверно.
2) "Диагонали квадрата взаимно перпендикулярны", это утверждение верно (по
свойству квадрата).
3) "В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности", это утверждение верно (по
определению окружности).
Поделитесь решением
Присоединяйтесь к нам...
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Угол A четырёхугольника ABCD, вписанного в окружность, равен 82°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ равны.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.
Комментарии:
(2016-01-16 21:32:52) Администратор: Владимир, на нашем сайте пока нет единой базы со всеми определениями, теоремами и т.д. На сайд добавляются только те материалы, которые использовались при решении задач. Второе, в свойствах биссектрисы есть теорема о сторонах.
(2016-01-16 17:26:11) Владимир: Большое спасибо за сайт. Замечательный сайт. Очень помогает. Но вот ищу свойства высоты, и никак. Наподобие свойств медианы, бисектрисы. И второе. В свойствах бисектрисы не нашел то что она делит противоположную сторону на отрезки пропорциональные остальным двум сторонам. Или это не свойство? Тогдп что это?