Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
Рассмотрим каждое утверждение.
1) "Любой
параллелограмм можно вписать в окружность", это утверждение неверно, т.к. должно выполняться
условие об углах параллелограмма.
2) "Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны", это утверждение верно по
свойству углов.
3) "Точка пересечения двух окружностей равноудалена от центров этих окружностей", это утверждение неверно. По
определению окружности, все точки окружности равноудалены от центра, а точки пересечения окружностей, естественно, принадлежат окружностям, т.е. находятся от центров на расстоянии равном радиусам окружностей. Если окружности имеют разные радиусы, то точка пересечения находится на разных растояниях от центров.
Поделитесь решением
Присоединяйтесь к нам...
Синус острого угла A треугольника ABC равен . Найдите CosA.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
В треугольнике ABC известно, что AB=8, BC=10, AC=12. Найдите cos∠ABC.
На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.
Комментарии:
(2015-03-09 16:33:57) Администратор: Татьяна, думаю, Вы правы. Я неверно истолковал утверждение. Исправлено. Спасибо большое, что поправили!!!
(2015-03-08 16:15:37) Татьяна: Я думаю, в 3) неверно, так как там не указано, что окружности с одинаковым радиусом, а если это окружности с разными радиусами, то точка их пересечения будет не равноудалена от центров этих окружностей. А вообще, огромная Вам благодарность, спасибо за сайт.