ОГЭ, Математика. Геометрия: Задача №9EF990 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По свойству вписанной в четырехугольник окружности:
AD+BC=AB+CD
AD+13=9+18
AD=9+18-13=14
Ответ: 14

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №08CDD9

На клетчатой бумаге с размером клетки 1x1 изображён параллелограмм. Найдите его площадь.



Задача №5E3594

Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.



Задача №AC6760

Найдите угол ABC. Ответ дайте в градусах.



Задача №4BB263

Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.



Задача №EABBBB

В трапеции ABCD AB=CD, ∠BDA=35° и ∠BDC=58°. Найдите угол ABD. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанная в четырехугольник окружность.
1)Описанный четырёхугольник, если у него нет самопересечений, как на рисунке, («простой»), должен быть выпуклым.
2) В выпуклый четырёхугольник ABCD можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны:
3) Если в четырёхугольник вписана окружность, то площадь такого четырёхугольника можно вычислить по формуле:
4) Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности лежат на одной прямой (теорема Ньютона). На ней же лежит середина отрезка с концами в точках пересечения противоположных сторон четырёхугольника. Эта прямая называется прямой Гаусса. Центр вписанной в четырёхугольник окружности — точка пересечения высот треугольника с вершинами в точке пересечения диагоналей и точках пересечения противоположных сторон (теорема Брокара).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика