Радиус вписанной в квадрат окружности равен 14√
Проведем радиусы окружности, как показано на рисунке.
Очевидно, что радиус вписанной окружности равен половине стороны квадрата, т.е.:
a=2R=2*14√
По свойству квадрата, все углы прямые.
Следовательно, треугольник, образованный двумя сторонами и диагональю (обозначим ее как b) - прямоугольный.
Тогда можем применить теорему Пифагора:
b2=a2+a2
b2=2a2
b2=2(28√
b2=2*282*2
b2=282*22=(28*2)2=562
b=56
Ответ: 56
Поделитесь решением
Присоединяйтесь к нам...
Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=12, DC=48, AC=35.
Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.
Один из углов прямоугольной трапеции равен 121°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.
Комментарии:
(2019-02-21 09:52:16) Администратор: Майкл, Вы правы, в решение вкралась ошибка. Спасибо большое, что заметили. Все исправлено!
(2019-02-21 00:54:00) Майкл: У вас получается , что лишь половина диагонали равно 28 , так как вы брали маленький треугольник , а просили Диагональ квадрата .Если а=14 корней из 2 ( то есть радиус , то тогда у вас диагональ меньше , чем сторона квадрата , а это невозможно.28 корней из двух больше 28