В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Окружность может быть вписана в четырехугольник, когда выполняется
условие:
AB+CD=BC+AD
AB=CD=x (по
свойству параллелограмма)
BC=AD=y (по
свойству параллелограмма)
Получаем:
x+x=y+y
2x=2y
x=y, т.е. все стороны нашего
параллелограмма равны, следовательно это
ромб.
Периметр
ромба равен:
P=6*4=24
Ответ: 24
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.
Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Стороны AC, AB, BC треугольника ABC равны 3√
Комментарии:
(2016-05-23 21:05:51) Администратор: Елена, сторона ромба, по условию, равна 6, поэтому 4*6, ну или 6*4. Чтобы не было разночтений, я поменял порядок множителей.
(2016-05-23 11:01:33) Елена: Почему периметр ромба равен 4*6? Должно быть 4*4.