Периметр треугольника равен 54, одна из сторон равна 15,
а радиус вписанной в него окружности равен 1. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=54/2=27
S=r*p=1*27=27
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Найдите площадь параллелограмма, изображённого на рисунке.
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=17, AC=51, NC=32.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
.




Комментарии:
(2022-12-27 19:06:59) Алина: Радиос окружности вписанной в равнобедренную трапецию равен 14 найдите высоту этой трапеции
(2018-03-04 17:21:28) Администратор: В данной задача она не нужна. Обычно, авторы для одного и того же условия придумывают различные вопросы. Поэтому условие получается более универсальным и с избыточными данными.
(2018-03-03 22:54:08) : Зачем нужна была сторона 15