Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
AB=BC=CD=AD=DH+CH=21+8=29 (по
определению ромба).
Рассмотрим треугольник AHD.
AHD -
прямоугольный (т.к. AH -
высота), тогда по
теореме Пифагора: AD2=AH2+DH2
292=AH2+212
841=AH2+441
AH2=400
AH=20
Ответ: AH=20
Поделитесь решением
Присоединяйтесь к нам...
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=54° и ∠ACB=104°. Найдите угол DCB. Ответ дайте в градусах.
Косинус острого угла А треугольника равен . Найдите sinA.
Сторона ромба равна 22, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
ABCDEFGHI – правильный девятиугольник. Найдите угол BAG. Ответ дайте в градусах.
Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 0,7 м?
Комментарии:
(2017-02-20 23:56:06) Администратор: Наталья, для этого и трудимся. Спасибо и Вам.
(2017-02-20 23:15:17) Наталья: Замечательный сайт, в геометрии не сильно шарю а в этом году огэ сдавать ваш сайт стал для меня находкой, очень подробно и понятно всё объясняется ❤
(2015-02-21 12:32:03) Администратор: Виктория, спасибо и Вам за теплые слова.
(2015-02-21 11:16:00) Виктория: Как замечательно, что существует этот сайт. Спасибо вам огромное)
(2014-12-12 20:31:53) Эбонит: норм
(2014-06-13 14:59:47) динара : спасибо