ОГЭ, Математика. Геометрия: Задача №0FA7EA | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0FA7EA

Задача №218 из 1087
Условие задачи:

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.

Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MK - средняя линия треугольника ABC. Следовательно, MK=BN и MK||BN (по теореме о средней линии).
NK - тоже средняя линия, равна BM и параллельна BM.
Получается, что MK=BN=BM=NK, т.е. BMNK - ромб (по свойству ромба).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1586C3

Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.



Задача №45BF27

Площадь прямоугольного треугольника равна 983/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №099B7F

Периметр треугольника равен 50, одна из сторон равна 20, а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.



Задача №983824

Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.



Задача №DF340B

В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 5:3, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=8.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Ромб - это параллелограмм, у которого все стороны равны. Ромб с прямыми углами называется квадратом.
Свойства ромба:
1) Ромб является параллелограммом. Его противолежащие стороны равны и попарно параллельны, АВ||CD, AD||ВС.
2) Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.
3) Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
4) Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика