В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Окружность может быть вписана в четырехугольник, когда выполняется
условие:
AB+CD=BC+AD
AB=CD=x (по
свойству параллелограмма)
BC=AD=y (по
свойству параллелограмма)
Получаем:
x+x=y+y
2x=2y
x=y, т.е. все стороны нашего
параллелограмма равны, следовательно это
ромб.
Периметр
ромба равен:
P=6*4=24
Ответ: 24
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=24, BD=28, AB=6. Найдите DO.
Найдите площадь треугольника, изображённого на рисунке.
Площадь равнобедренного треугольника равна 144√
Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.

Комментарии:
(2016-05-23 21:05:51) Администратор: Елена, сторона ромба, по условию, равна 6, поэтому 4*6, ну или 6*4. Чтобы не было разночтений, я поменял порядок множителей.
(2016-05-23 11:01:33) Елена: Почему периметр ромба равен 4*6? Должно быть 4*4.